Какие данные вводятся в программу мультисим. Примеры и задачи в среде Multisim. Задание на проведение работы

Multisim является современной программой моделирования электронных цепей и представляет виртуальную лабораторию, включающую измерительные приборы и обширные библиотеки электронных компонентов. В этой статье будут рассмотрены такие этапы создания электрической принципиальной схемы в среде Multisim 12.0 как соединение символов компонентов на схеме, именование цепей, работа с пробником-индикатором напряжения.

Соединение символов компонентов на схеме

Для связи между компонентами в схеме используют цепи и шины. Для добавления цепи в схему используется команда «Проводник» из меню «Вставить», для добавления шины – команда «Шину». После выбора из меню необходимой команды курсор приобретет вид крестика. В Multisim соединение символов компонентов на схеме при помощи цепи может быть произведено несколькими способами:

  • автоматическое соединение;
  • соединение примыканием;
  • ручное соединение.

Для того, что бы с помощью цепи соединить контакты символов необходимо подвести курсор к выбранному контакту и щелкнуть по нему левой кнопкой мыши, затем протянуть курсор до следующего контакта и также щелкнуть по нему левой кнопкой мыши – цепь создана. В процессе создания схемы может возникнуть необходимость соединить контакт символа с цепью. В таком случае, после подведения курсора к выбранному контакту, с которым будет соединена цепь, необходимо щелкнуть по нему левой кнопкой мыши и протянуть курсор до места соединения с другой цепью, после чего также щелкнуть в этом месте левой кнопкой мыши - система создаст узел в месте стыковки создаваемой цепи с уже существующей. Такое соединение называется автоматическим. Есть еще один способ прокладывания цепей – это соединение контактов символов примыканием. Для реализации этого способа, переместите подсоединяемый символ так, что бы конец его входного контакта совпал с концом выходного контакта символа компонента к которому производится подсоединение (при этом в месте соединения должна появиться небольшая точка, символизирующая то что контакты удачно состыковались) и щелкните левой кнопкой мыши для его размещения на схеме, затем перетащите мышью символ в нужное место на схеме (при этом цепь проложится за символом). Пример автоматического соединения символа компонента и проводника представлен на рисунке 1.

Рис. 1. Автоматическое соединение символа компонента и проводника.

Последовательность действий в данном примере разбита на пять шагов:

  1. На первом шаге на рисунке представлены два символа уже соединенные между собой проводником.
  2. Шаг 2 демонстрирует добавление нового символа в рабочую область чертежа.
  3. На третьем шаге производится перемещение нового символа до контакта с проводником. При этом соединение с проводником производится автоматически после того как левая кнопка мыши отпущена.
  4. Выделим символ при помощи левой кнопки мыши и переместим его в новое место.

Рисунок 2 демонстрирует пример соединения двух символов компонентов примыканием.

Рис. 2. Соединение контактов двух символов компонентов примыканием.

Последовательность действий в данном примере представлена в виде четырех шагов:

  1. На первом шаге на рисунке представлены размещенные в рабочем поле чертежа два символа компонента.
  2. На втором шаге производится перемещение второго символа до контакта с первым символом. При этом в месте соединения появляется цветная точка, символизирующая о том, что стыковка контактов символов произошла удачно. После того как левая кнопка мыши отпущена, соединение производится автоматически.
  3. Переместим второй символ компонента в новое место на чертеже.
  4. Проводник был проложен за символом.

Для соединения контактов двух символов компонентов вручную при помощи цепи выберите в меню «Вставить» пункт «Проводник», щелкните левой кнопкой мыши по выводу первого символа (при этом курсор приобретет вид крестика). Потяните курсор в сторону следующего контакта, при этом появится проводник, прикрепленный к курсору. При движении мышки управляйте направлением соединения щелчками левой кнопки мыши в точках изменения маршрута соединения. При этом каждый щелчок левой кнопки мыши прикрепляет проводник к проложенным точкам. Рисунок 3 демонстрирует ручной способ соединения контактов символов компонентов.

Рис. 3. Ручное соединение контактов символов компонентов.

При использовании такого способа соединения прокладываемый проводник автоматически обходит символы компонентов, с которыми нет соединения (рис. 4).

Рис. 4. Проводник автоматически обходит символы компонентов, с которыми нет соединения.

Ручной способ соединения контактов символов компонентов рекомендуется использовать для трудных, критических маршрутов проводников, так как он является более сложным. Также можно использовать комбинированное соединение – автоматическое и ручное в одной схеме.

Для большей гибкости в процессе соединений в Multisim можно начинать и заканчивать соединение в «воздухе», то есть без прикрепления проводника к контакту символа компонента или начинать из прежде установленной точки соединения. Для размещения проводника в «воздухе» выберите в меню «Вставить» пункт «Проводник», щелкните левой кнопкой мыши в области чертежа (этим действием вы создадите начальную точку соединения), переместите курсор для того что бы проложить проводник, после чего щелкните два раза левой кнопкой мыши в области чертежа для завершения прокладки проводника (этим действием вы создадите конечную точку соединения). В некоторых случаях может возникнуть необходимость модификации маршрута соединения в схеме. Для того, что бы изменить расположение проводника, выделите его при помощи левой кнопки мыши (при этом на проводнике появятся несколько точек «перетаскивания»), щелкните левой кнопкой мыши по одной из них и перетащите при помощи мыши соединение, меняя его маршрут. Точки «перетаскивания» можно добавлять или удалять. Для этого нажмите на клавиатуре клавишу Ctrl и щелкните левой кнопкой мыши по проводнику в месте, где вы хотите добавить или удалить точку «перетаскивания». Так же изменять маршрут соединения можно путем перемещения сегмента проводника. Для этого выделите проводник при помощи левой кнопки мыши, поместите курсор над сегментом проводника (при этом курсор примет вид двойной стрелки), щелкните левой кнопкой мыши по сегменту и переместите его при помощи мыши, меняя маршрут соединения.

Цвет проводников на схеме можно изменять. Для того, что бы изменить цвет проводника или цвет сегмента проводника, щелкните правой кнопкой мыши на проводнике и в открывшемся контекстном меню выберите пункт «Цвет цепи» или «Цвет сегмента». В открывшемся окне «Палитра» выберите необходимый цвет и нажмите на кнопку «ОК». В результате проводник на схеме отобразится в новом цвете.

Там, где несколько цепей идут по общему пути, используются шины. Шина группирует цепи, упрощая читаемость схемы. Для добавления шины в схему используется команда «Шину» из меню «Вставить».

Именование цепей.

Для повышения читаемости схемы каждой цепи в схеме можно присвоить имя. Для именования цепей схемы щелкните два раза левой кнопкой мыши по проводнику, в результате чего будет открыто окно «Установки цепи». По умолчанию каждой цепи при создании присваивается автонаименование, которое отображается в поле «Имя цепи» на вкладке «Цепь». Новое название цепи можно ввести в поле «Предпочтительное имя цепи». Видимость имени цепи на схеме задается при помощи установки флажка в чекбоксе «Показать имя». Так же на вкладке «Цепь» можно изменить цвет цепи. Сделать это можно посредством выбора нужного цвета в окне «Палитра». Данное окно вызывается при помощи нажатия на цветную иконку в поле «Цвет цепи». Для того, что бы выполненные на вкладке «Цепь» изменения вступили в силу, нажмите на кнопку «Применить» или «ОК». Рисунок 5 демонстрирует цепь с присвоенным ей именем, а так же окно «Установки цепи».

Рис. 5. Цепь с присвоенным ей именем, а так же окно "Установки цепи".

Применение пробника-индикатора напряжения.

На панели инструментов «Виртуальные измерительные компоненты» (данную панель можно добавить в проект при помощи команды меню «Вид/Панель инструментов») находятся пиктограммы пяти цветных пробников-индикаторов напряжения: бесцветный, синий, зеленый, красный, желтый. Принцип работы данных индикаторов не отличается, различие состоит лишь в цвете. Пробник-индикатор напряжения определяет напряжение в конкретной точке схемы и если исследуемая точка имеет напряжение равное или большее значения напряжения срабатывания, которое указано в настройках данного пробника-индикатора, то индикатор загорается цветом. Установить необходимое пороговое значение срабатывания пробника-индикатора можно в окне настроек данного прибора на вкладке «Параметры», установив в поле «Пороговое напряжение (VT)» необходимое значение напряжения. Для вступления в силу произведенных изменений нужно нажать на кнопку «ОК». Окно настроек можно открыть с помощью двойного щелчка левой кнопки мыши на пиктограмме данного прибора на схеме. Название окна настроек соответствует названию цвета настраиваемого пробника-индикатора. К примеру, для зеленого пробника-индикатора окно настроек будет иметь название «PROBE_GREEN», а для желтого – «PROBE_YELLOW». На схеме пороговое напряжение срабатывания пробника-индикатора отображается рядом с его пиктограммой. На рисунке 6 представлен пример подключения нескольких пробников-индикаторов к исследуемой схеме, а так же окно настроек зеленого пробника.

Рис. 6. Пример подключения нескольких пробников-индикаторов к исследуемой схеме, а так же окно настроек зеленого пробника.

Факультет нелинейных процессов Кафедра электроники, колебаний и волн

Е.Н. Егоров, И.С. Ремпен

ПРИМЕНЕНИЕ ПРОГРАММНОГО ПРИКЛАДНОГО ПАКЕТА MULTISIM ДЛЯ МОДЕЛИРОВАНИЯ РАДИОФИЗИЧЕСКИХ СХЕМ

Учебно-методическое пособие

Саратов – 2008

Введение

Основные принципы создания схемы

Описание основных элементов

Анализ схем

Меры предосторожности и безопасности

Теоретическое задание

Задание для численного эксперимента

Приложение

Контрольные вопросы

1. Введение

Разработка любого радиоэлектронного устройства сопровождается, как правило,

физическим или математическим моделированием. Физическое моделирование связано с большими материальными затратами, поскольку требуется изготовление макетов и их исследование, которое может быть весьма трудоемким. Поэтому часто применяют математическое моделирование с использованием средств и методов вычислительной техники. Одной из таких программ является электронная система моделирования Multisim (Electronics Workbench), отличающаяся простым и легко осваиваемым пользовательским интерфейсом. Широкое распространение Multisim получила в средних и высших учебных заведениях, где она используется в учебных целях в качестве лабораторного практикума по целому ряду предметов (физика, основы электротехники и электроники, основы вычислительной техники и автоматики и др.).

Электронная система моделирования Multisim имитирует реальное рабочее место исследователя – лабораторию, оборудованную измерительными приборами, работающими в реальном масштабе времени. С ее помощью можно создавать, моделировать как простые, так

и сложные аналоговые и цифровые радиофизические устройства.

В настоящей лабораторной работе описываются основные принципы работы с электронной системой моделирования Multisim 9. Для четкого понимания принципов ее работы необходимо:

знание основных принципов работы операционной системы Windows;

понимание принципов работы основных измерительных приборов (осциллограф, мультиметр, и т.п.);

знание отдельных элементов радиоэлектронных устройств.

2. Основные принципы создания схемы.

Работа с электронной системой моделирования Multisim включает в себя три основных

этапа: создание схемы, выбор и подключение измерительных приборов, и, наконец, активация схемы – расчет процессов, протекающих в исследуемом устройстве.

В общем случае процесс создания схемы начинается с размещения на рабочем поле Multisim компонентов из библиотеки программы. Подразделы библиотеки программы Multisim поочередно могут быть вызваны с помощью иконок, расположенных на панели инструментов (рис. 1). Каталог выбранного раздела библиотеки располагается в

вертикальном окне справа или слева от рабочего поля (устанавливается в любое место перетаскиванием стандартным способом – за шапку заголовка). Для выбора требуемого элемента из библиотеки необходимо подвести курсор мыши к соответствующей иконке и нажать один раз на стрелку раскрывающегося списка, после чего выбрать в списке необходимый для работы элемент. После этого необходимый для создания схемы значок (символ) компонента переносится на рабочее поле программы нажатием левой клавиши мыши. При размещении компонентов схемы на рабочем поле программы можно также воспользоваться контекстным меню, возникающим при нажатии на правую клавишу мыши на свободном месте рабочего поля. На этом этапе необходимо предусмотреть место для размещения контрольных точек и иконок контрольно-измерительных приборов.

Рис. 1. Каталоги библиотеки компонентов Multisim 9

Выделенный компонент схемы (выделяется рамкой из штриховой синей линии) можно повернуть (контекстного меню, кнопок на панели инструментов или пункта меню Circuit>Rotate) или зеркально отразить относительно вертикальной (горизонтальной) оси (команда меню Circuit>Flip Vertical (Horizontal), контекстное меню, кнопки на панели инструментов). При повороте большинство компонентов поворачиваются на 90o против часовой стрелки при каждом выполнении команды, для измерительных приборов (амперметр, вольтметр и др.) меняются местами клеммы подключения.

В готовой схеме пользоваться поворотом и отражением элементов нецелесообразно, поскольку это чаще всего приводит к путанице соединительных проводов – в этом случае компонент нужно отключить от цепи, и только потом вращать (отражать).

По умолчанию устанавливается виртуальный элемент, обладающий идеальными свойствами (например, отсутствие внутренних шумов и потерь) того или иного элемента. С помощью двойного щелчка по значку компонента можно изменить его свойства. В раскрывающемся диалоговом окне устанавливаются требуемые параметры (как правило, номинал элемента схемы и ряд других параметров для других элементов типа измерительных приборов или сложных интегральных схем) и выбор подтверждается нажатием кнопки «Ok» или клавиши «Enter» на клавиатуре. В том же диалоговом окне, при нажатии кнопки Replace появляется диалоговое окно с указанием всей библиотеки элементов. С помощью этого окна можно заменить идеальный элемент его реальным аналогом, при этом варьируется не только его номинал, но и производитель конкретных схемных элементов, а также серия элемента. Для большого числа компонентов можно выбрать параметры, соответствующие реальным элементам (диодам, транзисторам и т.п.) различных производителей.

При создании схем удобно также пользоваться динамическим меню, которое вызывается нажатием правой кнопки мыши. Меню содержит команды Help (помощь), Paste (вставить), Zoom In (увеличить), Zoom Out (уменьшить), Schematic Options (параметры схемы), а также команды Add <Название компонента>. Эта команда позволяет добавить на рабочее поле компоненты, не обращаясь к каталогам библиотеки. Количество команд Add <Название компонента> в списке меню определяется количеством типов компонент (резисторов, знака заземления и т.д.), уже имеющихся на рабочем поле.

После размещения компонентов производится соединение их выводов проводниками. При этом необходимо учитывать, что к выводу компонента можно подключить только один проводник. Для выполнения подключения курсор мыши подводится к выводу компонента, и после появления площадки, нажимается левая кнопка мыши. Появляющийся при этом проводник протягивается к выводу другого компонента до появления на нем такой же площадки, после чего ещё раз нажимается левая кнопка мыши. При необходимости подключения к этим выводам других проводников в контекстном меню (появляется при нажатии правой кнопки мыши) выбирается точка (символ соединения, обозначен как

Junction) и переносится на ранее установленный проводник. Если на ней виден след от пересекающего проводника, то электрического соединения нет и точку необходимо установить заново. После удачной установки к точке соединения можно подключить еще два проводника. Если соединение нужно разорвать, курсор подводится к соответствующему проводу и выделяется левой кнопкой мыши, после чего нажимается клавиша Delete.

Если необходимо подключить вывод к имеющемуся на схеме проводнику, то проводник от вывода компонента курсором подводится к указанному проводнику и после появления точки соединения нажимается левая кнопка мыши. Следует отметить, что прокладка соединительных проводников производится автоматически, причем препятствия – компоненты и другие проводники – огибаются по ортогональным направлениям (по горизонтали или вертикали).

Подключение к схеме контрольно-измерительных приборов производится аналогично. Панель с контрольно-измерительным оборудованием (за исключением амперметра и вольтметра) расположена вертикально с правой стороны рабочей области, и включает в себя такие элементы как мультиметр, осциллограф (2-х и 4-х канальный), ваттметр, функциональный генератор, бодплоттер, спектранализатор и т.д. Более подробно работа некоторых из этих приборов будет описана ниже.

Для таких приборов, как осциллограф или логический анализатор, соединения целесообразно проводить цветными проводниками, поскольку их цвет определяет цвет соответствующей осциллограммы.

Каждый элемент может быть передвинут на новое место. Для этого он должен быть выделен и перетащен с помощью мышки. При этом расположение соединительных проводов изменится автоматически. Можно также переместить целую группу элементов: для этого их нужно последовательно выделять мышкой при нажатой клавише Ctrl, а затем перетащить их в новое место. Если необходимо переместить отдельный сегмент проводника, к нему подводится курсор, нажимается левая кнопка и, после появления в вертикальной или горизонтальной плоскости двойного курсора, производятся нужные перемещения.

3. Описание основных элементов

Как уже говорилось, в электронной системе Multisim имеется несколько разделов

библиотеки компонентов, которые могут быть использованы при моделировании. Ниже приводится краткая справка по основным (естественно, не всем) компонентам. После названия в скобках приведены некоторые параметры компонента, которые могут быть изменены пользователем.

Все компоненты условно разделим на ряд подгрупп.

3.1. Источники сигналов (вкладки Power Source Components и Signal Source Components).

Понятно, что здесь под источниками сигналов подразумеваются не только источники питания, но и управляемые источники.

Батарея (напряжение). Длинная полоска соответствует положительной клемме.

Заземление (метка).

Источник постоянного тока

Источник переменного

Источник переменного

синусоидального напряжения

синусоидального тока

(эффективное значение

(эффективное значение тока,

напряжения, частота, фаза).

частота, фаза).

Источники фиксированного

Генератор однополярных

напряжения. Применяются в

прямоугольных импульсов

логических схемах.

(амплитуда, частота,

коэффициент заполнения).

Генератор амплитудно-

Генератор фазо-

модулированных колебаний

модулированных колебаний

(напряжение и частота

(напряжение и частота

несущей, коэффициент и

несущей, индекс и частота

частота модуляции).

модуляции).

3.2. Пассивные элементы (вкладка Basic) – библиотека, в которой собраны все пассивные компоненты, а также коммуникационные устройства.

Резистор (сопротивление). Конденсатор (емкость).

Катушка индуктивности Трансформатор. (индуктивность).

Реле (находится только в библиотеке элементов).

Переключатель, управляемый нажатием заданной клавиши (по умолчанию – пробел).

Потенциометр (реостат). Параметр «Key» определяет символ клавиши клавиатуры (по умолчанию A), при нажатии на которую сопротивление уменьшается на заданную в процентах величину (параметр «Increment», по умолчанию 5%) или увеличивается на такую же величину при нажатии клавиш Shift+«Key». Параметр «Setting» задает начальную установку сопротивления в процентах (по умолчанию – 50%), параметр «Resistance» задает номинальное значение сопротивления.

Конденсатор и катушка индуктивности переменной емкости. Действуют аналогично потенциометру.

3.3. Полупроводниковые элементы (Diode Components и Transistor Components) – диоды и транзисторы.

Светодиод (тип).

Симметричный динистор или диак (тип).

Выпрямительный мост (тип).

Симметричный тринистор или триак (тип).

Полевые МОП-транзисторы с изолированным затвором (n - канальные с обогащенной подложкой и p -канальные с обедненной подложкой), с раздельными или соединенными выводами подложки и истока (тип).

Полевые МОП-транзисторы с изолированным затвором (n - канальные с обогащенным затвором и p -канальные с обедненным затвором), с раздельными или соединенными выводами подложки и истока (тип).

Арсенид-галлиевые n - и p- канальный полевые транзисторы (тип)

Указанные выше разделы библиотеки содержат основные схемотехнические элементы, которые студентам придётся применять в данном практикуме. Далее, опишем некоторые разделы библиотеки, которые в нашей работе будут затрагиваться реже.

3.5. Логические цифровые микросхемы (разделы библиотеки TTL и CMOS).

Светоиндикатор (цвет свечения). Семисегментный индикатор с дешифратором (тип). Линейка из десяти светодиодов со встроенным АЦП (минимальное и минимальное напряжение).

ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (количество входов)

Тристабильный буфер Триггер Шмидта (тип) (элемент с тремя состояниями) и буфер (тип)

Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют в Multisim специальных обозначений и изображаются в виде пиктограммы (квадрат с различным числом выходов и соответствующими обозначениями). Определить тип того или иного схемного элемента можно по описанию в окне библиотеки. Поэтому здесь не приводится их описание.

3.6. Индикаторные устройства (Misc, Measurement Components или раздел Indicators в

библиотеке).

Вольтметр с цифровым отсчетом (внутреннее сопротивление, режим измерения постоянного или переменного тока). Отрицательная клемма показана утолщенной черной линией.

Амперметр с цифровым отсчетом (внутреннее сопротивление, режим измерения постоянного или переменного тока). Отрицательная клемма показана утолщенной черной линией.

Лампа накаливания (напряжение, мощность). Семисегментный индикатор

Линейка из десяти независимых светодиодов (напряжение, номинальный и минимальный ток).

ЦЕЛЬ РАБОТЫ

Изучение и получение навыков работы в программе Multisim

ЗАДАНИЕ НА ПРОВЕДЕНИЕ РАБОТЫ

Изучить принцип построения электронных схем в программе Multisim

ОБЩИЕ СВЕДЕНИЯ

Организация интерфейса программы Multisim представлена на рис. 1. Здесь показана стандартная инструментальная панель, содержащая кнопки для наиболее употребительных функций программы.

Панель симуляции позволяет осуществлять старт, остановку и другие функции симуляции, описанные ниже.

Панель инструментов имеет конпки для каждого из используемых инструментов, выбираемых из базы данных Multisim/

Общая панель разработки, показанная на рис.1. содержит окно схемы, в котором размещается исследуемая схема.

Стандартная панель содержит следующие кнопки:

На инструментальной панели расположены следующие кнопки:

И, наконец, на панели компонентов показаны следующие элементы:

Инструменты

В программе Multisim есть ряд виртуальных приборов. Эти приборы используются также как и их реальные эквиваленты. Использование виртуальных приборов - один из лучших и самых простых путей исследования схемы. Эти приборы могут быть помещены в любой уровень схемы или подсхемы, но они активны только в настоящее время для схемы или подсхемы на активных компонентах.

Виртуальные приборы имеют два вида: значок инструмента, который Вы устанавливаете на вашу схему, и, открытый прибор, где Вы устанавливаете способ управления прибором и отображения на экран.

Активный прибор
Идентификатор инструмента
Идентификатор инструмента
Значок инструмента
Индикаторы ввода-вывода

Значок прибора показывает, как прибор связан со схемой. Когда инструмент активен, черная точка внутри индикаторов ввода-вывода показывает, что прибор связан с точкой разветвления.

Добавление прибора к схеме:

1. По умолчанию инструментальная панель приборов отображена на рабочем пространстве. Если инструментальная панель не отображена, нажмите кнопку Instruments. Появится Инструментальная панель Instruments, на которой каждая кнопка соответствует одному инструменту.

2. На инструментальной панели Instruments нажмите кнопку прибора, который Вы хотите использовать.

3. Переместите курсор в то место схемы, где Вы хотите разместить прибор и нажмите на кнопку мыши.

Появятся также значок и идентификатор инструмента. Инструментальный идентификатор идентифицирует тип прибора и его образца. Например, первый прибор, который Вы размещаете на схеме – будет назван "XMM1", второй - "XMM2", и так далее.


Примечание: чтобы изменить цвет значка Instrument, щелкните на немправой кнопкой мыши и выберете Color из контекстного меню. Выберите желатемый цвет, и нажмите OK.

Использование прибор:

1. Чтобы просмотреть и изменить средства управления прибором, дважды щелкните на нем. Появится окно управления Инструментом. Внесите необходимые изменения в параметры настройки также, как Вы сделали бы это на их реальных эквивалентах.

Обратите внимание на то, что параметры настройки должны соответствовать вашей схеме. Если параметры настройки неправильны, это может исказить результаты имитации.

Примечание : Не все участки открытого прибора поддаются изменению. Знак в виде руки появляется, если курсор находится на настройке, которая может изменяться.

2. Чтобы "активировать" схему, нажмите кнопку Simulate на Панели управления, и выберите Run из появившегося всплывающего меню. Multisim начнет имитировать поведение схемы и значения измеряемых параметров в точках, к которым Вы подключили прибор.

В то время, как схема активизирована, Вы можете корректировать параметры настройки инструмента, но Вы не можете изменять схему, изменяя значения или выполняя какие-либо действия, такие как вращение или перемещение элемента.

В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.



После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.


По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр , функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.


Проверим правильность показаний (на всякий случай=)) по закону Ома


Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.


Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа.


Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д.

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание!