Научный форум dxdy. Анализируйте, прогнозируйте поведение и оптимизируйте инженерные расчётные проекты с помощью пакета COMSOL Multiphysics ® Симулятор физических процессов

Volodya писал(а):

Пытался скачать триальную версию Matlab/Simulink + SimMechanics, но на сайте разработчиков, после заполнения форм, сообщили, что позволят скачать в случае, если у них самих возникнет желание, тогда они сами свяжутся.

Да. Они, как правило, дают скачивать SimMechanics, если у Вас уже имеется лицензия Матлаба...

Если Вы с мех-мата, то очень вероятно, что там имеются студенческие лицензии Матлаба. Дело в том, что Матлаб, беру смелость это заявить, наиболее распространенный и универсальный на сегодняшний день пакет программ прикладной математики, как в академической среде, так и на производстве (например, на нашем заводе). SimMechanics это, так называемый, тулбокс - расширение ядра по определенной тематике. Кроме механики существуют штук 20 тулбоксов, например, обработка сигналов, статистика, оптимизация и тд. Каждый тулбокс снабжен стандартным графическим интерфейсом, позволяющим создавать модель нужной архитектуры, работая мышью. Именно, нужно перетягивать нужные иконки используемых обьектов в рабочеее поле и определять "входы" и "выходы" обьектов. Каждый из тулбоксов может приобретаться опционально, в зависимости от конкретных потребностей.

Справедливости ради, замечу, что SimMechanics - относительно свежий тулбокс (впервые появился года 3 назад), т.е., скорее всего, не обладает такой стабильностью, как, например, Simulink, существующий уже целую "вечность".

Лично я использую Матлаб в 2-х ситуациях. Во-первых, если нужно проверить новый алгоритм или метод, то Матлаб позволяет без лишней суеты программировать в С стиле. Плюс к этому в пакет встроены оптимизированные векторные операции (BLAS), линейная алгебра (LAPACK) и очень продвинутый интерфейс визуализации 2-3D диаграмм. Во-вторых, когда возникает необходимость использовать в нашей программе разнообразные математические функции, то компиллятор (это своего рода тулбокс Matlab Compiler) позволяет скомпилировать файлы программы Матлаб (m-files) в DLLину. Mathworks разрешает 3-м лицам пользоваться такой DLLиной бесплатно (не нужна дополнительная лицензия).

Если программа Матлаб с тулбоксами нужна не в коммерческих целях, то могу заметить, что этот софт очень распространен среди частных пользователей в России, т.е. его относительно несложно приобрести.

Volodya писал(а):

На сайте разработчиков ITI-SIM + SimulationX 2.0 я не нашёл ссылок для скачивания триальной версии.

Я намеренно дал ссылку, т.к. это более дешевая альтернатива ADAMS. Впрочем, если нужно, как было написано вначале, расчитывать соударения тел сложной формы, то не уверен, что ITI-SIM или Матлаб помогут. Сама по себе 3-D модель удара - это целая отдельная сложная наука.

Volodya писал(а):

Например, задан массив частиц, в виде точек в 3-х мерном пространстве, твёрдого тела. Каждая частица обладает массой, вектором скорости. Верно ли, что вектора скоростей всех частиц одного абсолютно твёрдого тела параллельны?

Нет, т.к. тело может вращаться, мгновеннная ось вращения...

Элективный курс рассчитан на изучение в 10 -11 классах естественно - математического, физико - математического, технологического профилей обучения. Одной из главных задач профильного обучения в средней общеобразовательной школе является ориентация выпускника на выбор профессии для успешной социализации в обществе и активной адаптации на рынке труда. Содержание программы нацелено на закрепление понятий, законов, положений, теорий по основным разделам физики: механика, молекулярно - кинетическая теория, электродинамика и формирование умений применять полученные знания в практической деятельности, в частности - использовать компьютерные технологии.

Использование компьютерного моделирования физических процессов дает возможность сформировать умения выполнять исследования с помощью компьютера, а также получить представление о возможностях и границах применимости компьютерного эксперимента.

Элективный курс: "Моделирование физических процессов на ЭВМ" имеет прикладную направленность.

Скачать:


Предварительный просмотр:

Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа №1

«Утверждаю»

Директор школы ________/ Дамашева А.А./ Приказ № 92/1 от 05.10.20..г.

Рассмотрено на заседании МО: __________

Руководитель МО:_________ /Попова Г.Н./

Рассмотрено на заседании Методсовета

03.10.20..г.

Руководитель: _________ /Туленкова А.Г.. /

Программа

элективного курса

«Моделирование физических процессов на ЭВМ».

10 -11 класс.

Составитель: Фаттахова З.Х.,

Учитель физики,

Г. Советский

20…г.

Пояснительная записка.

Элективный курс рассчитан на изучение в 10 -11 классах естественно - математического, физико - математического, технологического профилей обучения. Одной из главных задач профильного обучения в средней общеобразовательной школе является ориентация выпускника на выбор профессии для успешной социализации в обществе и активной адаптации на рынке труда. Содержание программы нацелено на закрепление понятий, законов, положений, теорий по основным разделам физики: механика, молекулярно - кинетическая теория, электродинамика и формирование умений применять полученные знания в практической деятельности, в частности - использовать компьютерные технологии.

Использование компьютерного моделирования физических процессов дает возможность сформировать умения выполнять исследования с помощью компьютера, а также получить представление о возможностях и границах применимости компьютерного эксперимента.

Элективный курс: "Моделирование физических процессов на ЭВМ" имеет прикладную направленность.

Целью курса:

Знакомство на практике с основными путями и методами применения знаний на практике;

Внутрипрофильная специализация в естественно - математическом, физико-математическом и технологическом профилях обучения;

Предоставление учащимся возможности удовлетворить индивидуальный интерес к изучению практических положений физики в процессе познавательной деятельности при проведении экспериментов и исследований физических процессов на ЭВМ.

Основные задачи:

Оказать помощь ученику в профессиональном самоопределении;

Развить интерес к физике и информатике;

Формировать навыки в решении задач и их моделировании на компьютере;

Познакомить на практике с такими видами деятельности, которые являются ведущими во многих инженерных технических профессиях, связанных с практическим применением физики и информационных технологий.

Формировать умения применять получение знания к решению задач, выполнять эксперименты на компьютере, обрабатывать результаты исследований, моделировать физические процессы на ЭВМ, работать с научной и методической литературой.

Учащиеся должны уметь:

Выполнять определенные программой исследования с использованием компьютерных моделей;

Решать физические задачи, строить таблицы, диаграммы;

Работать со средствами информации (осуществлять поиск и отбор информации, конспектировать, осуществлять ее реферирование);

Оформлять полученные результаты;

Моделировать физические процессы на ЭВМ и осуществлять их исследование.

Методы и организационные формы обучения:

При проведении занятий используются такие формы занятий, как вводные лекции, практические занятия по решению задач, самостоятельная работа учащихся (коллективная, групповая, индивидуальная), консультации.

При выполнении работ с компьютерными моделями организуется исследовательская деятельность по экспериментальному установлению зависимостей между величинами. В зависимости от уровня владения учащимися исследовательским методом, уровень самостоятельности при его осуществлении и характер помощи со стороны учителя могут быть различными.

Помимо исследовательского метода целесообразно использовать частично- поисковый метод, в отдельных случаях информационно-иллюстративный. Последний метод используется, когда у учащихся отсутствует база, позволяющая использовать продуктивные методы

Материал, составляющий содержание элективного курса, соответствует государственному

образовательному стандарту физического образования на профильном уровне, в связи, с чем не столько расширяет круг предметных знаний учащихся, сколько углубляет их за счет усиления внепредметных и методологических компонентов содержания.

Средства обучения :

Основные средства обучения перечислены в программе курса. Однако особого обсуждения заслуживает вопрос применения компьютеров на занятиях элективного курса. Применение персональных компьютеров возможно в нескольких направлениях:

Применение компьютерных обучающих программ для моделирования физических процессов;

Поиск информации в Интернет;

Применение компьютеризированных комплексов.

Применение компьютеров как средства представления информации.

На сегодняшний день достаточно велико число компьютерных обучающих программ по физике. Среди них есть как отечественные, так и зарубежные, представляющие учителю и ученику различные возможности. Хорошими можно считать программы, позволяющие не только наблюдать за ходом эксперимента, но и изменять те или иные параметры

(например: "Открытая физика", "Живая физика").

Продолжительность курса 34 часа (17 часов - физики, 17 часов - информатики).

Учебно - тематическое планирование

Кол-во часов

Формы

работы

Формы контроля

Всего

Физика

ИВТ

Задача № 26, 27, 45. А. П. Рымкевич. Сб. задач по физике.

MS Excel.

Беседа, работа с персональным компьютером.

Оценка построенных графиков.

Решение графических задач.

Задача № 56, 57, 65, 72.

Индивидуальная работа с ПК.

Оценка выполнения практических заданий .

Задача № 77, 83(ПРГ).

Урок - практикум

Оценка созданной модели

Задача № 230, 235, 236.

Н. Угринович. Информатика и информационные технологии.

Индивидуальная работа с ПК.

Оценка созданной модели

И. Семакин. Задачник – практикум. Стр. 155

Индивидуальная работа с ПК

Оценка созданной модели

И. Семакин. Задачник – практикум Стр. 167.

Беседа, работа с ПК.

Задача № 366.

Индивидуальная работа с ПК

Оценка созданной модели

Задача № 394, 397, 399. А. П. Рымкевич.

Беседа, работа с ПК

Оценка выполнения практического задания

Задача № 673, 674. А. П. Рымкевич.

Беседа, работа с ПК.

Оценка созданной модели

Моделирование колебаний математического маятника.

Изучение графика гармонических колебаний.

Задача № 422, 417, 418, 428.

Индивидуальная работа с ПК.

Оценка созданной модели

Экспотенциальная запись числа при решении задач молекулярной физики.

Задача № 486, 479.

Беседа, работа с ПК.

Оценка построенных графиков.

Задача № 538, 539.

Индивидуальная работа с ПК

Оценка построенных графиков

И. Семакин. Задачник-практикум Том 2. Стр 178.

Индивидуальная работа с ПК

Оценка построенных графиков.

Изучение электрических цепей с помощью учебной программы «Открытая физика»

Правила Кирхгофа для разветвлённых цепей.

В. А. Балаш. Задачи по физике и методы их решения. Стр. 290.

Беседа, работа с ПК

Оценка выполнения практического задания.

Задача № 844, 845.

Индивидуальная работа с ПК.

Оценка созданной модели.

(Полусумматор, триггер).

Индивидуальная работа с ПК.

Оценка созданной модели.

Презентация самостоятельно созданных моделей физических процессов.

Моделирование на ЭВМ

Кол. - во часов

Прямолинейное равномерное движение.

Построение и чтение графиков скорости и перемещения.

Законы равномерного движения

Построение графика равномерного движения

Прямолинейное равноускоренное движение.

Решение графических задач.

Законы равноускоренного движения

Вставка рисунка. Построение.

Определение величины ускорения, перемещения и скорости при равнопеременном движении.

Равнопеременное движение

Построение модели движения

Моделирование физических процессов.

Модель «Движения тела, брошенного под углом к горизонту» в электронных таблицах.

Сложение движения.Расчет параметров.

Попади в цель. Исследование модели

Исследование физических моделей.

Модель движения небесных тел и планет.

Вычисление высоты стационарной орбиты спутника Земли.

Формулы движения по окружности

Модель движения планет.

Закон сохранения импульса и его применение для вычисления скорости движения ракеты.

Вывод формулы закона сохранения импульса.

График движения ракеты.

Модель школьного опыта с «мёртвой петлёй». Программирование в среде Турбо – Паскаль.

Закон сохранения энергии.

График движения самолета.

Определение КПД простого механизма с использованием компьютерного эксперимента.

Теория механизмов. Сложение сил.

Компьтерный эксперимент.

Модель управления процессом. Значение обратной связи.

Двигатель внутреннего сгорания.

Автоколебания.

Модель часового механизма.

Модель управления процессом. Значение обратной связи.

Двигатель внутреннего сгорания.

Уравнение колебаний.

График колебаний.

Экспотенциальная запись числа при решении задач молекулярной физики

Молекулярно - кинетическая теория

Модель массы и размеров молекул.

Построение графиков изопроцессов в среде автоматизации вычислений MathCad.

Газовые законы.

Цикл Карно.

Графическое изображение электрических и магнитных полей.

Электродинамика. Электрическое и магнитное поле.

Силовые линии.

Изучение электрических цепей с помощью учебной программы «Открытая физика».

Закон Ома.Закон Кирхгофа.

Модель действующей электрической цепи.

Моделирование движения заряженной частицы в электрическом и магнитном поле.

Движение электронов в электро - лучевой трубе.

Исследование движения.

Моделирование логических элементов ЭВМ с помощью электрических схем.

(Полусумматор, триггер).

Логические схемы.

Моделиролвание схем.

Презентация собственных разработок.

Литература:

  1. Информатика. Задачник – практикум. Том 2./ Под ред. Семакина И.Г., Хеннера Е.К. - М.: "Лаборатория". 2001.
  1. Балаш В.А. Задачи по физике и методы их решения. Пособие для учителя. - М.: "Просвещение", 1983.
  1. Самоучитель. Турбо Паскаль "7,0". Москва - Санкт Петербург - Нижний Новгород - Ростов на Дону - Екатеринбург - Самара - Киев - Харьков - Минск. 2003.
  1. Рымкевич А.Г. Сборник задач по физике.9 -11 классы. - М.: "Дрофа",2000.
  1. Могилев А.В., Пак Н.И. Информатика. / Поб ред.Хеннера Е.К. - М.: "АСА Дема",1999.
  1. Таевский А.Ю. Самоучитель работы в М. Office, Word 27\ 2000 Ekcel 97|2000/, электронная почта. Киев, "А.С.К.", 2002.
  1. П. И. Совертков. Занимательное компьютерное моделирование в элементарной математике. Учебное пособие. - М.: "Гелиос АРВ", 2004.
  1. Н. Угринович. Информатика и информационные технологии. Учебник для 10 -11 кл./ Н.Д. Угринович, - М.: "Бином. Лаборатория знаний", 2003.
  1. Касьянов В.А. Физика. 10 класс. Учебник. - М.: "Дрофа", 2001.

Но пока не затрагивали одну из самых интересных и важных тем - испытания спроектированных устройств, как виртуальные, так и реальные.

Выдержит ли корпус удар в трех плоскостях? Деформируется при экстремальных температурах? Хорошо ли продумана внутренняя система охлаждения электроники? Ответить на эти вопросы можно двумя способами. Первый: провести испытания готового устройства (прототипа) в реальной жизни и по результатам отправить его на доработку. Второй: провести виртуальное моделирование физических процессов и скорректировать проблемные места на этапе разработки. Это гораздо быстрее и эффективнее, так можно получить рабочие прототипы уже на первой итерации. Давайте рассмотрим оба варианта на реальных проектах…

1. Проверка надёжности крепления корпуса

Начнем с устройства для отправки сигнала SOS, которое встраивается в салон автомобиля. По условиям технического задания оно должно крепиться на защелках, использовать винты запрещено.

Рис. 1. SOS-устройство в салоне авто (лицевая сторона)

В процессе разработки решено смоделировать столкновение транспортного средства с преградой. Цель - сохранить работоспособность устройства после аварии, и обезопасить пассажиров (ведь они не хотят получить травму из-за того, что устройство выскочило из крепления).

Вот так устройство выглядит с внутренней стороны приборной панели авто:


Рис. 2. Корпус SOS-устройства (внутренняя сторона)

Что же произойдет при столкновении? Используется довольно мощное крепление, посмотрите на защелки. Нужно ли моделировать?

Расчет решено сделать в 2 этапа, чтобы учесть усилие прижима защелок:

  1. Вставка устройства в панель в салоне автомобиля.
  2. Столкновение.
На двух анимированных иллюстрациях ниже показан процесс защелкивания в различных ракурсах. В жизни это будет немного иначе, но при моделировании желательно максимально упростить задачу в разумных пределах. Главное - учесть преднатяг защелки.


Рис 3. Моделирование процесса защелкивания (снаружи)


Рис 4. Моделирование процесса защелкивания (в разрезе)

Из анимации видно, что защелка сначала проходит сквозь деталь. Такую хитрость можно и даже нужно делать при упрощении задачи. В нашем расчете контакт деталей был включен позже.


Рис. 5. Вылет устройства из приборной панели в результате ДТП

После таких результатов на изделие уже смотришь совсем другим взглядом. Обратите внимание, какой образован рычаг в конструкции.

На этом проекте всё уже было готово к производству прототипов. Поджимали сроки. Никто не ожидал таких результатов. По итогам моделирования мы вовремя приостановили производство прототипов. На одну итерацию стало меньше, сэкономлены деньги заказчика.

Мы внесли изменения в конструкцию, в результате которых вылет устройства стал значительно меньше за счет подбора новых компонентов на плате. Также было скорректировано крепление нижней части устройства.

Ещё один пример моделирования на этом проекте - расчеты на дефекты литья пластмассы (литьё под давлением). Они позволили подобрать оптимальные материалы и сделать детали более технологичными. В результате был получен отчет о возможных утяжинах при запуске изделия в серийное производство. Также проведен расчет на остаточные напряжения в отливке.

Такие дефекты чаще всего возникают из-за неравномерного охлаждения отливки, и зависят от материала изделия. В дальнейшем они могут привести к появлению трещин и полному разрушению корпуса. Вы могли сталкиваться с таким явлением, если наблюдали, как пластиковое изделие начинает трескаться через определенное время.

2. Пластиковые корпусы: дефекты отливки

А теперь давайте перейдем к следующему проекту. Ниже представлена фотография элемента пластикового корпуса, который производится серийно.


Рис. 6

А это - результаты моделирования его отливки (с лицевой стороны изделия проблем не видно):


Рис. 7

Скорее всего, вы уже видели подобные дефекты на пластике. В данном случае он расположен только на внутренней стороне, но все же заказчик должен знать об этих дефектах. Вы наверняка заметили, что известные бренды не допускают подобных проблем в своих продуктах.

Как видите, результаты моделирования не совпадают на все 100 процентов с реальностью, но общая картина все-таки схожа. В серийном производстве одна отливка может отличаться от другой, это нормальное явление.

Некоторые изделия могут оказаться с дефектом по вине изготовителя. С помощью САЕ-системы можно дать рекомендации производителю и так уменьшить количество итераций с его стороны. Именно так мы и поступили в данном проекте, в результате проблема была решена в короткий срок. И изделие стало выпускаться серийно без видимых дефектов не только снаружи, но изнутри тоже.

Ещё один пример. На рисунке ниже показана анимация заливки изделия. В расчете учитывалась литниковая система, система охлаждения пресс-формы ну и сама пресс-форма:


Рис. 8

Дефект отливки выделен красным цветом:


Рис. 9

Этот дефект чётко виден и на фотографии:


Рис. 10

3. Краш-тесты электроники

Испытания на прочность - популярная тема в обзорах планшетов и смартфонов. Часто на форумах обсуждают, будет ли работать устройство после случайного падения.

Мы тоже проводим такие тесты в процессе разработки потребительской электроники. Возьмём в качестве примера шлюз Bluetooth:


Рис. 11

При падении с высоты 1,2 метра устройство должно быть в первозданном состоянии, это было одно из требований заказчика. В техническом задании были отмечены возможные проблемные места, в которых устройство могло сломаться. Мы провели 7 расчетов и получили положительные результаты. На рисунке ниже показан один из результатов расчетов:


Рис. 12

После изготовления прототипов мы ещё раз провели испытания, на этот раз - падение устройства в реальной жизни. Результаты - снова положительные.

Стоит учитывать, что фрезерованные прототипы по физическим характеристикам немного отличаются от серийных корпусов, которые производятся методом отливки - при фрезеровке в изделии остаются остаточные напряжения. Однако и в этом случае лучше произвести испытания.

После анализа полученных прототипов было принято решение немного усилить корпус, добавив в конструкцию ребра. После моделирования эффекта нажатия пальцем на корпус жесткость устройства должна была увеличиться приблизительно на 30 процентов:


Рис. 13

Вторым этапом стал заказ новых прототипов.

После испытаний на устойчивость к падению устройство, тем не менее, стало ломаться, чего никто не ожидал:


Рис. 14

Такой вот ценный опыт. Хорошо, что корпус еще не был запущен в серийное производство.

Решено провести повторное моделирование и сравнить результаты с практикой. И действительно, программа показала это новое проблемное место:


Рис. 15

Решено убрать отдельные ребра. После очередного моделирования получены положительные результаты.

Вывод - при любом изменении конструкции нужно обязательно делать повторные расчеты, а компьютерное моделирование физических процессов помогает сэкономить время и деньги при разработке электронике. Уж лучше проверять корпус на прочность в системах инженерного анализа, а не в реальной жизни.

[?!] Вопросы и комментарии приветствуются. На них будет отвечать наш инженер-конструктор Максим Кендысь, эксперт по моделированию изделий из пластмассы и металла в системах инженерного анализа (CAE).

Учителям остаётся только выбирать, если они, конечно, готовы к этому выбору. Сегодня мы предлагаем вашему вниманию 13 различных приложений и игр, которые могут пригодиться при изучении физики. Впрочем, они настолько интересны, что вполне подойдут не только ученикам и студентам, но и всем, кому интересно устройство нашего мира.

Snapshots of the Universe – удивительное приложение для iOS, не так давно выпущенное самим Стивеном Хокингом совместно с компанией Random House . Приложение состоит из восьми экспериментов, которые дают пользователям возможность не только получить базовые знания по физике, но и познакомиться с принципами, управляющими нашей Вселенной. В рамках предложенных экспериментов игроки могут отправлять ракеты в открытый космос, собирать собственные звёздные системы, искать и изучать чёрные дыры. Каждый эксперимент можно проводить бесчисленное количество раз, изменяя физические параметры и наблюдая за появляющимися эффектами. Чтобы лучше понять эксперименты, можно зайти в раздел объяснения результатов и посмотреть видео. Приложение доступно на iTunes . Cтоимость игры от великого физика составляет всего лишь $4,99.

Это игра с уникальным сочетанием особенностей аркады и головоломки, место действия которых – мир субатомных частиц. Взяв под контроль одного из кварков, вы должны вести переговоры с фундаментальными силами Вселенной. Другие частицы будут притягиваться и отталкиваться, соединяться и изменять полярность, задача несчастного кварка - не терять контроль и избегать разрушения. Через всю игру красной нитью проходит история Элисон – молодого физика с нелёгким прошлым. Её путешествие через субатомный мир протекает в воспоминаниях и в конечном счёте приводит к удивительным открытиям. На сайте представлена бесплатная демо-версия, за полную придётся заплатить от 5-ти до 50-ти долларов – в зависимости от особенностей вашей системы.

Игра от первого лица, разработанная лабораторией игр (MIT), даёт возможность игрокам познакомиться с восприятием пространства на околосветовых скоростях и понять теорию относительности. Задача игрока – перемещаться по 3D-пространству, собирать сферические объекты, которые замедляют скорость света на фиксированные значения, что даёт возможность наблюдать за различными визуальными эффектами эйнштейновской теории.

Чем медленнее движется излучение - тем яснее проступают некоторые физические эффекты. К 90-му собранному камню свет будет распространяться со скоростью пешехода, что заставит вас почувствовать себя героями сюрреалистического мира. Среди явлений, с которыми может познакомиться герой во время игры, эффект Допплера (изменение при движении игрока длина волны регистрируемого им света, что приводит к изменению окраски видимых предметов, которая смещается в ультрафиолет и инфракрасную область), абберация света (увеличение яркости света в направлении движения), релятивистское замедление времени (различия между субъективным ощущением времени игрока и протекании времени во внешнем мире), преобразование Лоренца (искажение пространства на околосветовых скоростях) и т.д.

Crayon Physics Deluxe - это 2D-пазл/игра «в песочнице», которая даёт возможность испытать игрокам, что было бы, если бы их рисунки могли превращаться в реальные физические объекты. Задача игрока – помогать шарику собирать звёздочки, рисуя подходящие для его движения поверхности – мосты, переправы, рычаги и т.д. Всё происходит в волшебном мире детского рисунка, где инструментами игрока являются восковые карандашики. Как минимум игра развивает художественное видение и творческие способности, как максимум – позволяет познакомиться с основами механики - гравитацией, ускорением и трением. Для теста на сайте представлена демо-версия , полную версию для PC, Mac и Linux можно приобрести за $19,95, приложения на Android и iOS обойдутся в $2,99.

Впрочем, для тех, кто только приступил к изучению движения тел и различных физических сил, будет также интересно ознакомиться с образовательной видеоигрой Physics Playground. Игра представляет собой площадку, на которой игроку нужно выполнять достаточно простые действия – с помощью зелёного шара сбивать красный воздушный шарик. Вот тут-то и начинается классическая механика: без правильного применения законов Ньютона игрокам вряд ли удастся сконструировать в интерактивной среде механизмы, которые помогут привести в движение шарик. Впрочем, можно пользоваться и интуицией – главное, что на протяжении 80-ти уровней интуитивные знания, позволяющие достигать цели, постепенно приводят к пониманию закономерностей, которые лежат в основе классической механики. Игра разработана компанией Empirical Game , которая занимается созданием развивающих образовательных игр. В открытом доступе её, к сожалению, нет, однако разработчики предлагают связаться с ними, если вас заинтересовал этот продукт. В полной версии можно отслеживать успехи игроков с помощью анализа журналов лог-файла.

«Наука, индустрия развлечений и игра слились в красивом уникальном творческом опыте Newton’s Playground. Манипулируйте Вселенной, создавайте невероятные сочетания планет и запускайте гравитацию», - говорят создатели приложения. Newton’s Playground – интерактивное приложение, которое базируется на моделях, отражающих гравитационную взаимосвязь различных тел. Имитируя гравитационные отношения планет, небольшое приложение Newton’s Playground даёт своим игрокам возможность понаблюдать за взаимодействием сфер, плавающих в открытом пространстве, или же самому поэкспериментировать с массой и плотностью различных тел и создать собственную Солнечную систему. Все расчёты основаны на исследованиях института астрономии Sverre Aarseth"s. Стоимость приложения в App Store – $1,99.

«Algodoo создает новую синергию между наукой и искусством», - гласит надпись на одной из страниц игры. Algodoo – это уникальная платформа 2D-моделирования физических экспериментов от Algoryx Simulation AB . С помощью мультяшных образов и интерактивных инструментов Algodoo позволяет создавать удивительные изобретения, разрабатывать игры для использования в классе или специальные эксперименты для лабораторных занятий по физике. В процессе своих естествоиспытаний и создания различных механизмов участники игры могут использовать жидкости, пружины, шарниры, двигатели, световые лучи, различные индикаторы, оптику и линзы. Моделируя различные конструкции и меняя параметры, игроки изучают трение, преломление, силу тяжести и т.д. Для новичков на сайте представлено подробное руководство , а также создан канал Youtube , на котором можно посмотреть десятки видео по теме. Для Windows и Mac доступны бесплатные версии игры, приложение для iPad стоит $4,99.

Autodesk ForceEffect – приложение для инженеров, которые занимаются различного рода проектированием. С помощью Autodesk ForceEffect можно делать инженерные расчёты прямо на мобильном устройстве. Это существенно облегчает работу по дизайну на стадии создания концепции, так как мгновенно определяет жизнеспособность конструкции. Впрочем, приложение будет интересно и тем, кто хотел бы узнать, как различные силы влияют на объекты. Таким энтузиастам вместо схемы дома для эксперимента можно взять обычный велосипед и на основе его фото провести ряд экспериментов, которые покажут, какую нагрузку он способен выдержать и что влияет на равновесие велосипеда. Особенно приятно, что приложение находится в открытом доступе и бесплатно доступно для Android , iOS .

Весьма занимательная программка, позволяющая моделировать всевозможные механические системы и ситуации в двухмерном пространстве, простыми движениями мыши.

Шекспир когда-то сказал: "Весь мир - театр, а люди в нем - актеры". Это если исходить с позиции художественного образа мышления. Если же посмотреть на мир с научной точки зрения, то можно перефразировать великого драматурга: "Весь мир - природа, а люди в ней объекты":). А при чем тут природа? Да при том, что по-гречески "природа" будет "физис", а отсюда и название главной науки обо всем сущем - "физика".

Физические явления окружают нас с самого раннего детства, и у каждого ребенка рано или поздно возникают разнообразные вопросы: "Почему светит солнце? Почему идет дождь? Почему бутерброд всегда падает на пол, а не зависает в воздухе? :)". И по мере взросления ребенок, пытаясь получить ответы на эти вопросы, методом "научного тыка" познает окружающий его мир и законы его существования. Но не всегда такие эксперименты заканчиваются безболезненно.

Именно для того, чтобы можно было безопасно, для ребенка и для окружающего его мира:), смоделировать любой физический процесс, я рекомендовал бы использовать программу Phun .

Доступная на сегодняшний день версия 5.28 - это довольно симпатично оформленная среда для механического моделирования. Несмотря на кажущуюся несерьезность (программа оформлена в виде детского рисунка), Phun - довольно правдоподобно имитирует реальные физические условия (можно моделировать ситуации в условиях антигравитации, в воздушном и безвоздушном пространстве и т. д.).

Установка программы для моделирования механических процессов Phun

Но обо всем в свою очередь. Сейчас мы установим и попробуем разобраться с программой. Для этого скачиваем установочный дистрибутив Phun, запускаем инсталлятор и ждем, когда все установится:).

Сразу оговорюсь, если у Вас старый компьютер с довольно слабенькой видеокартой, то Phun в таком случае будет заметно притормаживать. Хотя заявлена поддержка (правда более ранней 4-ой версии) видеокарт с 32 МБ памяти, на моем компьютере со 128 МБ программа иногда подвисала довольно ощутимо. Я думаю, что оптимальный вариант будет около 256 МБ.

Пока мы с Вами говорили, Phun уже установилась и жаждет запуска. Не знаю, баг ли это в программе или косяк с моей системой в частности, но когда я согласился на запуск программы сразу после установки, то она на меня ругнулась и отказалась запускаться. Пришлось запускать ее вручную (стартовала без проблем:)).

Русификация программы

Перед нами окно программы с приветственным проектом:

Программа по умолчанию - английская, но в пятой версии появилась и русская локализация. Чтобы русифицировать Phun, заходим в меню "File" и в пункте "Change language" выбираем опцию "Russian". Готово!

Теперь, когда мы имеем дело с русской версией, рассмотрим элементы управления программой.

Интерфейс программы

В самом верху Вы видите немного стилизированную, но привычную по другим приложениям строку меню.

Меню "Файл" позволяет настроить сцену под проект (сохранить, очистить), загрузить или создать новую сцену, сменить язык, переключить вид, проверить обновления, скачать дополнительные сцены или купить полную версию (хотя зачем, если и бесплатной хватает с головой).

Меню "Инструменты", "Управление" и "Контекстное меню" позволяют скрыть или отобразить соответствующие вкладки программы.

Меню "Инструменты":

Здесь собраны все те приспособления, при помощи которых мы будем создавать нужные нам для эксперимента объекты. Вся панель разделена на три зоны: в первой зоне инструменты для перемещения объектов, во второй - для рисования, а в третьей - для вставки механизмов. Рассмотрим их по порядку.

Первую панель открывает инструмент "Перемещение", который позволяет нам перемещать любые объекты в горизонтальной и вертикальной плоскостях. Инструмент "Рука" также служит для перемещения, однако может выполнять свою функцию в уже запущенном эксперименте.

Инструмент "Вращение" нужен для вращения объектов вокруг их центра тяжести или крепления. Инструмент "Масштаб" позволяет изменять размеры любых объектов. "Нож" - предназначен для разделения любого предмета на части, причем работает он и в режиме подготовки эксперимента и в режиме проигрывания.

В панели рисования первый инструмент - "Полигон". С его помощью Вы сможете нарисовать любую фигуру "от руки" или ровный многоугольник (для этого зажмите и удерживайте клавишу Shift, чтобы нарисовать ровную линию). Инструмент "Кисть" позволяет рисовать любые линии, фигуры и объекты вручную.

"Прямоугольник" помогает нам нарисовать четкий прямоугольник или квадрат (также зажав Shift), а с инструментом "Круг" Вы всегда сможете начертить ровный круг. Далее идут три специализированных инструмента "Шестерня", "Плоскость" и "Цепь". Все они соответственно создают свои объекты.

Третья панель также предназначена для создания специальных объектов со своими физическими характеристиками. Здесь находятся инструменты "Пружина", "Крепление", "Ось" и "След". Назначение первых троих, я думаю, объяснять не надо, а последний служит для отображения инерционного следа от движения какого-либо объекта, к которому прикреплен инструмент (см. пример Cycloid).

Меню "Управление":

Здесь мы видим нечто похожее на пульт управления стандартным плеером. Здесь есть кнопки реверса (отменить/повторить) и "плей" (соответственно, запустить эксперимент).

Далее находится ползунок масштаба и две кнопки навигации. Масштаб в Phun можно изменять тремя способами: передвигая ползунок, зажав левую кнопку мыши на кнопке (+/-) или колесом мыши, когда она находится над полем эксперимента. Кнопка со стрелками служит для перемещения по рабочему полю. Зажмите ее и, удерживая, перемещайте мышь. Хотя, по-моему, удобнее делать то же самое, зажав кнопку мыши в любом месте на рабочем поле.

Две последние кнопки панели управления служат для создания невесомости и безвоздушного пространства. По умолчанию гравитация соответствует настоящему значению в 9,8 м/с 2 , а сила сопротивления воздуха - 1. Но эти значения легко можно изменить в "Настройках" в подменю "Симулятор". Там же можно установить скорость симуляции (по умолчанию - 1).

Перед тем, как приступать к созданию собственных сцен, следует рассмотреть еще одну немаловажную деталь управления - контекстное меню.

В Phun контекстное меню у Вас всегда на виду, и Вы легко можете изменять свойства любого объекта в реальном времени. В самом общем виде контекстное меню отображается для рабочей области. Здесь мы можем настроить вид сцены, добавить один из готовых объектов на выбор и изменить цвет фона.

Для каждого нового объекта функции будут расширяться, дополняясь такими как клонирование, действия, выбор материала, настройка контуров и т. д.

Теперь мы готовы к работе с Phun, и для начала предлагаю провести небольшой эксперимент, чтобы проверить срабатывает ли в программе закон всемирного тяготения.

Первый эксперимент

Для этого в меню "Файл" выберем "Новая сцена" и нарисуем горизонтальную плоскость (0°). Теперь на одинаковой высоте подвесим два тела побольше и поменьше (для интереса маленький шарик я сделал из метала, а большой из стекла).

Все готово для эксперимента, осталось только нажать "Пуск!". Как видим, оба тела с одинаковой скоростью полетели вниз. Единственным минусом оказалось то, что стеклянный шар не разбился:((ненатурально получилось). В остальном же тела повели себя так, как и должны были бы настоящие их аналоги.

Более сложные манипуляции с телами и жидкостями

Усложним эксперимент, добавив вместо твердой поверхности, на которую приземляются тела, воду.

Поставим два столба (прямоугольника) и жестко их закрепим. Это будет емкость для нашей воды. Теперь "нальем" в нее саму воду. Чтобы создать воду, достаточно нарисовать между столбами большой предмет, а затем в его контекстном меню выбрать в "Действиях" пункт "Превратить в воду".

Готово! Можно запускать эксперимент.

Готовые сцены

Обзор программы был бы неполным, если бы я не упомянул, что для Phun существует множество готовых сцен. Несколько из них доступно, если нажать в меню "Файл" кнопку "Открыть сцену". Если же Вам и этого мало, Вы всегда можете скачать из Интернета тысячи других. Достаточно в том же меню "Файл" выбрать пункт "Скачать еще сцены".

Желаю Вам творческих успехов и всегда удачных экспериментов:)!

И традиционно, флеш-игра, также основанная на некоторой доле физики. Здесь мы управляем магнитным погрузчиком, основная задача которого - погрузить в машину все ящики. Но чем дальше, тем сложнее это сделать.

P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.

P.P.S. Если Вам понравилась эта программа, то советую обратить внимание на еще одну не менее интересную. Программа Начала Электроники позволит Вам моделировать реальные процессы в разнообразных электрических схемах, которые Вы же и создаете!