Резонанс в последовательной цепи (резонанс напряжений). Резонанс напряжений в электрической цепи и его последствия Условия резонанса напряжения

Резонанс токов

Резонанс токов возникает в цепи с параллельным включением элементов (рис.5.1). Такая цепь содержит два сложных потенциальных узла, а все элементы находятся под одним и тем же напряжением

Для любого из узлов - 1 или 1’ справедлив первый закон Кирхгофа:

Применяя к (5.2) выражения (1.7) и (1.12) приведем его к виду

(5.3)

Подставим в (5.3) вместо u(t) его значение из (5.1) и решим его

Векторная диаграмма, построенная по (5.4) приведена на рис. 5.2. В качестве исходного в ней принят общий для всех элементов цепи вектор напряжения . С этим вектором совпадает по направлению вектор тока через резистор. Его величина равна

Вектор тока через индуктивность отстает от вектора напряжения, а вектор тока через емкость опережает его на 90 о. Проведем последовательное сложение векторов . Результатом сложения является вектор Он сдвинут по фазе относительно вектора на угол j . Разность векторов дает вектор реактивного тока . Его величина

. (5.5)

Векторы и образуют треугольник токов. Для этого треугольника справедливы выражения

. (5.7)

Треугольник токов наглядно показывает, что для достижения резонанса в цепи необходимо обеспечить равенства противофазных токов и . Тогда результирующий реактивный ток цепи и угол j будут равны нулю, а сопротивление цепи станет активным. Из выражения (5.5) видно что может быть равно нулю при соблюдении условия

Отсюда легко определить:

Частоту , на которой наступает резонанс (резонансную частоту) при заданных значениях элементов L и С

Значение одного из элементов L или С, если заданы резонансная частота и другой элемент

Определим значение тока всей цепи и токов, протекающих в ее ветвях в режиме резонанса.

Действующее значение тока всей цепи на частоте легко найти по (5.6)

Но это значение равно току, протекающему через активное сопротивление цепи т.е.

Ток, протекающий через элемент L определим по закону Ома

. (5.13)

Подставляя в (5.13) вместо U его значение из (5.11) получим

Аналогично определяем выражение для тока через элемент

Принимая во внимание (5.8) нетрудно сделать вывод о том, что токи протекающие через индуктивный и емкостной элементы равны по величине, но противоположны по фазе. Величина Q равная

(5.16)

может быть больше единицы, в специальных устройствах достигает несколько десятков и сотен единиц и называется добротностью.

Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи. Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны. Именно это указывает на то, что в цепи происходит колебательный процесс с частотой по передаче электрической энергии конденсатора в магнитную энергию индуктивности и наоборот. Энергия источника на этот процесс не затрачивается (при идеальных L и С). Она расходуется только на преодоление сопротивления резистора R. Поэтому цепь рис.5.1. называют параллельным колебательным контуром.

Чтобы завершить анализ цепи рассмотрим зависимость ее токов и напряжения от частоты (рис.5.4). Ток, протекающий через элемент R - i R



определяется законом Ома и не зависит от частоты. Ток через емкость i c согласно (5.15) прямопропорционален частоте, а ток через индуктивность i L -обратнопропорционален. На частоте они равны по величине, но противоположны по направлению. Общий ток цепи определяется суммой трех токов. Поэтому он имеет большое значение на частотах, дальних от резонансной, но принимает значение i R на резонансной частоте. Физически это означает что на резонансной частоте проводимость цепи минимальна (она равна проводимости только элемента R). Поэтому падение напряжения между узлами 1-1’ максимально на частоте и имеет вид резонансной огибающей. В силу этих качеств параллельный колебательный контур широко применяют в радио и радиотехнических устройствах для выделения сигналов на заданной частоте.

Резонанс напряжений

Резонанс напряжений возникает в цепи с последовательным включением элементов (рис.5.5).


Известно, что комплексное сопротивление токов цепи определяется выражением

.

По определению резонанс в цепи рис.5.5 наступает, когда выполнится условие

Отсюда видно, что резонанс в цепи возникает на частоте

Очевидно также, что

Видим, что полученные выражения полностью соответствуют (5.9) и (5.10). Это подтверждает единство физической сути различных видов резонанса.

Определим ток и напряжение всей цепи, а также падение напряжения на ее отдельных элементах в режиме резонанса.

Так как сопротивление всей цепи в режиме резонанса минимально и равно R то ток в ней максимален и равен

а падение напряжения определяется ЭДС источника - Е.

Падение напряжения на отдельных элементах легко найти по закону Ома. Так, падение напряжения на резисторе R равно

. (5.18)

Тривиальный математически результат интересен по физической сути. Все напряжение источника выделяется на одном элементе цепи.

Падение напряжения на индуктивности равно

. (5.19)

Величина

называется добротностью и может принимать значение десятков и сотен единиц. Значит, падение напряжения на индуктивности может в десятки и сотни раз превышать ЭДС источника.

Падение напряжения на емкости равно

Так как , то падение напряжения на емкости равно по величине падению напряжения на индуктивности, но согласно (5.8) они противоположны по знаку. Отношение напряжения на индуктивности или на емкости в режиме резонанса к току в этом режиме называют характеристическим сопротивлением , причем

. (5.22)

Резонанс напряжений происходит в электрической цепи, включающей в себя несколько элементов: источник электроэнергии, катушку индуктивности и конденсатор. Перечисленные элементы соединяются последовательно. При этом источник напряжения имеет такую частоту, которая совпадает с внутренним контуром. Это часто применяется в полосовых фильтрах.

Катушка индуктивности и последовательно включенный в цепь конденсатор вместе особенным образом воздействуют на генератор, от которого запитана цепь. Также они влияют на фазовые соотношения напряжения и тока:

  1. Первый элемент сдвигает фазу, при этом напряжение начинает обгонять ток примерно на четверть периода.
  2. Второй элемент действует иначе. Он заставляет ток обгонять напряжение также на одну четвертую часть периода фазы.

Индуктивное сопротивление действует на смещение фаз, из-за чего его можно считать противоположным работе емкостного сопротивления. В результате итоговый сдвиг фаз между напряжением и током в цепи зависит от суммарного действия индуктивного и емкостного сопротивлений, а также соотношения между ними. От этого тоже зависит характер цепи.

Если одноимённая величина превосходит противоположную, то систему можно считать емкостной, ведь ток превосходит по фазе. При иной ситуации характер цепи считается индуктивным, ведь напряжение доминирует.

Общее реактивное сопротивление определить просто. Необходимо сложить два показателя сопротивления:

  1. Индуктивное от катушки.
  2. Емкостное от конденсатора.

Из-за того, что они оказывают противоположное воздействие, одному из них присваивается отрицательный знак (обычно ёмкостному сопротивлению конденсатора). Тогда общее реактивное сопротивление можно найти так: из показателя катушки вычесть конденсатор. Если общее напряжение разделить на найденный параметр, то по закону Ома получится сила тока. Эту формулу можно легко изменить, переведя на напряжение. Оно будет равно произведению силы тока и разности двух сопротивлений (индуктивное берется с катушки, а емкостное - с конденсатора).

Если раскрыть скобку, то первое значение отразит действительный показатель части общего напряжения, которая старается преодолеть сопротивление. Второе - слагающая всего напряжения, которая пытается преодолеть емкостный параметр. Так, общее напряжение можно рассматривать как сумму этих слагаемых.

Обычно значением активного сопротивления можно пренебречь. Если оно слишком велико, учитывать его все же нужно.

Для определения этого значения нужно вычислить квадратный корень из суммы двух частей:

  1. Общее активное сопротивление, возведенное в квадрат.
  2. Квадрат разности индуктивного и емкостного сопротивлений, то есть общее реактивное.

Очевиден переход к закону Ома. Если разделить силу тока на найденное значение, то можно получить напряжение.

Если соединить катушку с конденсатором последовательно, происходит меньшее смещение по фазе, чем если бы эти элементы были включены отдельно. Это связано с тем, что эти элементы действуют на цепь совершенно иначе, сдвигая баланс в разные стороны. Они компенсируют фазовый сдвиг, усредняют его значение.

Возможен и равный баланс. Полная компенсация соотношения между напряжением и током произойдет, если сопротивление катушки и конденсатора будут равны друг другу. В этом случае цепь будет вести себя так, будто бы в нее не включены эти элементы. Действие системы сведется к чистому активному сопротивлению, образованному соединительными проводами и катушкой. Сила действующего тока достигнет максимального значения, его можно будет вычислить по стандартному закону Ома.

При описанной ситуации действующие напряжения на катушке и конденсаторе сравняются, а также достигнут максимального значения. Если активное сопротивление в этой цепи минимальное, то локальные показатели будут в несколько раз превышать общее напряжение. Такое явление принято называть резонансом напряжений.

Важно понимать, что местные сопротивления напрямую зависят от показателей тока . Если частоту тока уменьшить, то индуктивное значение снизится, а емкостное - возрастет. Помимо активного сопротивления, в сети также возникнет реактивное, из-за чего резонанс сойдет на нет. Это случится и в том случае, если изменить значения индуктивности или емкости.

Если в цепи возникает резонанс, то энергия источника расходуется исключительно на нагрев проводов, то есть преодоление активного сопротивления, так как катушка перекидывает ток на конденсатор и обратно без усилий генератора. Ведь в цепи с одним из элементов ток колеблется, периодически переходя от истока в магнитное поле. Это касается катушки. В случае с конденсатором наблюдается аналогичная ситуация, только участвует электрическое поле. Если эти два элемента объединены, а также наблюдается резонанс, то энергия циклично движется от катушки к конденсатору и обратно. При этом она тратится в большей степени только из-за сопротивления проводника.

При нарушении резонанса количество энергии, требуемой первому и второму элементу, не совпадает. Возникнет избыток, который будет покрываться усилиями генератора. Этот процесс можно сравнить с механизмом часов с маятником. Если бы силы трения не было, он мог колебаться без использования дополнительного груза или пружины в механизме. Но эти элементы, когда необходимо, передают часть своей энергии маятнику, из-за чего тот преодолевает силу трения и движется непрерывно. При резонансе в электроцепи количество энергии, которую необходимо сообщить для поддержания колебаний, минимально.

Цепь считается колебательным контуром, если соблюдено несколько условий. Во-первых, ток должен быть переменным. Во-вторых, в систему должны входить генератор, конденсатор и катушка индуктивности. В-третьих, элементы должны быть соединены последовательно. В-четвертых, показатели внутренних сопротивлений должны быть равны.

Но резонанс невозможен, если частота генератора, емкость и индуктивность цепи не будут соответствовать значениям, зависящим от других параметров цепи. Все они вычисляются по специальным несложным формулам.

Польза и вред

Резонанс часто используют с пользой. Один из ярких бытовых примеров - починка радиоприемника . Электрика устройства настраивается таким образом, чтобы возник резонанс. Благодаря этому напряжение на катушке повышается и превосходит значение в цепи, созданной антенной. Это необходимо для нормальной работы приемника.

Но иногда действие резонанса сказывается на технике исключительно пагубно. Рост напряжения на некоторых участках может привести к их порче. Из-за того, что локальные значения не соответствуют генератору, отдельные детали или измерительные приборы могут выйти из строя.

В цепях переменного тока при последовательном соединении активного элемента r, емкостного С и индуктивного L может возникнуть такое явление как резонанс напряжений. Это явление можно использовать с пользой (например, в радиотехнике), но также оно может и нанести серьезный вред (в электрических установках большой мощности резонанс напряжений может вызвать серьезные последствия).

Принципиальная схема и векторная диаграмма при резонансе напряжений показаны ниже:

При последовательном включении всех трех элементов данной электрической цепи будет справедливо следующее:

Также нужно помнить, что резонанс возможен только при φ = 0, что при последовательном соединении равносильно вот такому соотношению х = ωL – 1/(ωC) = 0, то есть должно выполняться условие ωL = 1/(ωC) или ω 2 LC = 1. Резонанса напряжений можно достичь тремя способами:

  • Подобрать индуктивность катушки;
  • Подобрать емкость конденсатора;
  • Подобрать угловую частоту ω 0 ;

Причем все эти значения частоты, емкости и индуктивности можно определить используя формулы:

Частота ω 0 носит название резонансной частоты. Если в цепи не изменяется ни напряжение, ни активное сопротивление r, то при резонансе напряжения ток в этой цепи будет максимален, и равен U/r. Это значит, что ток будет полностью не зависим от реактивного сопротивления цепи. В случае же, когда реактивные сопротивления X C = X L будут превосходить по своему значению активное сопротивление r, то на зажимах катушки и конденсатора начнет появляться напряжение, значительно превосходящее напряжение на зажимах цепи. Условие, при котором напряжение на зажимах цепи будет меньше напряжения реактивных элементов будет иметь вид:

Величина , имеющая размерность сопротивления и для удобства расчетов обозначена нами как ρ, называется волновым сопротивлением контура.

Кратность превышения напряжения на зажимах емкостного и индуктивного элемента по отношению к сети можно определить из выражения:

Величина Q определяет резонансные свойства контура и носит названия добротность контура. Также еще резонансные свойства могут характеризовать величиной 1/Q – затухание контура.

Мгновенная мощность для индуктивности и емкости будет равна p L = U L Isin2ωt и p С = -U С Isin2ωt. При резонансе напряжения, когда U L = U С, эти мощности будут равны в любой момент времени и противоположны по знаку. А это означает, что в данной цепи будет происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, при этом обмена энергией между энергией полей и энергией источника электрической энергии (источника питания) и не происходит. Это вызвано тем, что p L + p С = dW м /dt + dW э /dt и W м + W э = const, то есть суммарная энергия полей в цепи постоянна. При работе такой системы энергия от конденсатора будет переходить в катушку в течении четверти периода, когда ток на катушке возрастает, а напряжение на конденсатора снижается. В течении следующей четверти периода картина противоположна – ток катушки будет снижаться, а напряжения конденсатора расти, то есть энергия от индуктивности будет переходить емкости. При этом источник электрической энергии, питающий данную цепь, будет покрывать только расход энергии, связанный с наличием в цепи активного сопротивления r.

То они по-своему воздействуют на генератор, питающий цепь, и на фазовые соотношения между током и напряжением .

Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки X L и емкостного сопротивления конденсатора Х С.

Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:




Применив к этой цепи , получим:

Формулу эту можно преобразовать следующим образом:

В полученном равенстве I X L -действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а I Х С -действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:


где R - общее активное сопротивление цепи, X L -Х С - ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

Резонанс напряжений в цепи переменного тока

Индуктивное и емкостное сопротивления, соединенные последовательно, вызывают в цепи переменного тока меньший сдвиг фаз между током и напряжением, чем если бы они были включены в цепь по отдельности.

Иначе говоря, от одновременного действия этих двух различных по своему характеру реактивных сопротивлений в цепи происходит компенсация (взаимное уничтожение) сдвига фаз.

Полная компенсация, т. е. полное уничтожение сдвига фаз между током и напряжением в такой цепи, наступит тогда, когда индуктивное сопротивление окажется равным емкостному сопротивлению цепи, т. е. когда X L = Х С или, что то же, когда ωL = 1 / ωС.

Цепь в этом случае будет вести себя как чисто активное сопротивление, т. е. как будто в ней нет ни катушки, ни конденсатора. Величина этого сопротивления определится суммой активных сопротивлений катушки и соединительных проводов. При этом в цепи будет наибольшим и определится формулой закона Ома I = U / R , где вместо Z теперь поставлено R.

Одновременно с этим действующие напряжения как на катушке U L = I X L так и на конденсаторе Uc = I Х С окажутся равными и будут максимально большой величины. При малом активном сопротивлении цепи эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи. Это интересное явление называется в электротехнике резонансом напряжений .

На рис. 1 приведены кривые напряжений, тока и мощности при резонансе напряжений в цепи.

Следует твердо помнить, что сопротивления X L и Х С являются переменными, зависящими от частоты тока, и стоит хотя бы немного изменить частоту его, например, увеличить, как X L = ωL возрастет, а Х С = = 1 / ωС уменьшится, и тем самым в цепи сразу нарушится резонанс напряжений, при этом наряду с активным сопротивлением в цепи появится и реактивное. То же самое произойдет, если изменить величину индуктивности или емкости цепи.

При резонансе напряжений мощность источника тока будет затрачиваться только на преодоление активного сопротивления цепи, т. е. на нагрев проводников.

Действительно, в цепи с одной катушкой индуктивности происходит колебание энергии, т. е. периодический переход энергии из генератора в катушки. В цепи с конденсатором происходит то же самое, но за счет энергии электрического поля конденсатора. В цепи же с конденсатором и катушкой индуктивности при резонансе напряжений (X L = Х С) энергия, раз запасенная цепью, периодически переходит из катушки в конденсатор и обратно и на долю источника тока выпадает только расход энергии, необходимый для преодоления активного сопротивления цепи. Таким образом, обмен энергии происходит между конденсатором и катушкой почти без участия генератора.

Стоит только нарушить резонанс напряжений в цени, как энергия магнитного поля катушки станет не равной энергии электрического поля конденсатора, и в процессе обмена энергии между этими полями появится избыток энергии, который периодически будет то поступать из источника в цепь, то возвращаться ему обратно цепью.

Явление это очень сходно с тем, что происходит в часовом механизме. Маятник часов мог бы непрерывно колебаться и без помощи пружины (или груза в часах-ходиках), если бы не силы трения, тормозящие его движение.

Пружина же, сообщая маятнику в нужный момент часть своей энергии, помогает ему преодолеть силы трения, чем и достигается непрерывность колебаний.

Подобно этому и в электрической цепи, при явлении резонанса в ней, источник тока расходует свою энергию только на преодоление активного сопротивления цепи, тем самым поддерживая в ней колебательный процесс.

Итак, мы приходим к выводу, что цепь переменного тока, состоящая из генератора и последовательно соединенных катушки индуктивности и конденсатора, при определенных условиях X L = Х С превращается в колебательную систему . Такая цепь получила название колебательного контура.

Из равенства X L = Х С можно определить значения частоты генератора, при которой наступает явление резонанса напряжений:

: входной контур приемника настраивается конденсатором переменной емкости (или вариометром) таким образом, что в нем возникает резонанс напряжений. Этим достигается необходимое для нормальной работы приемника большое повышение напряжения на катушке по сравнению с напряжением в цепи, созданным антенной.

Наряду с полезным использованием явления резонанса напряжений в электротехнике технике часто бывают случаи, когда резонанс напряжений вреден. Большое повышение напряжения на отдельных участках цепи (на катушке или на конденсаторе) по сравнению с напряжением генератора может привести к порче отдельных деталей и измерительных приборов.

В электротехнике при анализе режимов работы электрических цепей широко используется понятие двухполюсника. Двухполюсником принято называть часть электрической цепи произвольной конфигурации, рассматриваемую относительно двух выделенных выводов (полюсов). Двухполюсники, не содержащие источников энергии, называются пассивными. Всякий пассивный двухполюсник характеризуется одной величиной – входным сопротивлением, т.е. сопротивлением, измеряемым (или вычисляемым) относительно двух выводов двухполюсника. Входное сопротивление и входная проводимость являются взаимно обратными величинами.

Пусть пассивный двухполюсник содержит одну или несколько индуктивностей и один или несколько конденсаторов. Под резонансным режимом работы такого двухполюсника понимают режим (режимы) двухполюсника при котором входное сопротивление является чисто активным. По отношению к внешней цепи двухполюсник ведет себя как активное сопротивление, вследствие чего входные напряжение и ток совпадают по фазе. Различают две разновидности резонансных режимов: резонанс напряжения и резонанс тока.

Резонанс напряжений

В простейшем случае резонанс напряжений может быть получен в электрической цепи переменного тока при последовательном включении катушки индуктивности и конденсаторов. При этом, изменяя емкость конденсаторов при постоянных параметрах катушки, получают резонанс напряжений при неизменных значениях напряжения и индуктивности, частоты и активного сопротивления цепи. При изменении емкости конденсаторов С происходит изменение реактивного емкостного сопротивления. При этом полное сопротивление цепи также изменяется, следовательно, изменяются ток, коэффициент мощности, напряжения на катушке индуктивности, конденсаторах, а также активная, реактивная и полная мощности электрической цепи. Зависимости токаI , коэффициента мощности cosи полного сопротивленияZ цепи переменного тока в функции емкостного сопротивления (резонансные кривые) для рассматриваемой цепи приведены на рис. 9,а . Векторная диаграмма тока и напряжений этой цепи при резонансе представлена на рис. 9,б .

Как видно из этой диаграммы, реактивная составляющая напряжения U L на катушке при резонансе равна напряжениюU С на конденсаторе. При этом напряжение на катушке индуктивностиU к при резонансе вследствие того, что катушка кроме реактивного сопротивленияX L обладает еще и активным сопротивлениемR , несколько больше, чем напряжение на конденсаторе.

Анализ представленных выражений (2), а также рис. 9,а иб показывают, что резонанс напряжений имеет ряд отличительных особенностей.

1. При резонансе напряжений полное сопротивление электрической цепи переменного тока принимает минимальное значение и оказывается равным ее активному сопротивлению, т.е.

2. Из этого следует, что при неизменном напряжении питающей сети (U = const) при резонансе напряжений ток в цепи достигает наибольшего значенияI =U /Z =U /R . Теоретически ток может достигать больших значений, определяемых напряжением сети и активным сопротивлением катушки.

а )б )

3. Коэффициент мощности при резонансе cos=R /Z =R /R = 1, т.е. принимает наибольшее значение, которому соответствует угол= 0. Это означает, что вектор токаи вектор напряжения сетипри этом совпадают по направлению, так как они имеют равные начальные фазы i = u .

4. Активная мощность при резонансе P =RI 2 имеет наибольшее значение, равное полной мощностиS , в то же время реактивная мощность цепиQ =XI 2 = (X L X C)I 2 оказывается равной нулю:Q =Q L Q C = 0.

5. При резонансе напряжений напряжения на емкости и индуктивности оказываются равными U С =U L =X C I =X L I и в зависимости от тока и реактивных сопротивлений могут принимать большие значения, во много раз превышающие напряжение питающей сети. При этом напряжение на активном сопротивлении оказывается равным напряжению питающей сети, т.е.U R =U .

Резонанс напряжений в промышленных электротехнических установках нежелательное и опасное явление, так как оно может привести к аварии вследствие недопустимого перегрева отдельных элементов электрической цепи или пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов при возможном перенапряжении на отдельных участках цепи. В то же время резонанс напряжений широко используется в различного рода приборах и устройствах электроники.